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Abstract—Parallel applications rely on I/O to load data, store
end results and to protect partial results from being lost to system
failure. Parallel I/O performance thus has a direct and significant
impact on application performance. Because supercomputer I/O
systems are very large and complex, it is impossible to directly
analyze their activity traces. While several visual or automated
analysis tools for large scale HPC log data exist, analysis research
in the high performance computing field is geared toward
computation performance rather than toward I/O performance.
Additionally, existing methods usually do not capture the network
characteristics of HPC I/O systems. We present a visual analysis
method for I/O trace data that takes into account the fact that
HPC I/O system can be represented as a network. We illustrate
performance metrics in a way that facilitates the identification of
abnormal behavior or performance problems. We demonstrate
our approach on I/O traces collected from existing systems at
different scales.

I. INTRODUCTION

Modern HPC system design typically separates compute
resources from on-line storage resources, for a number of
reasons, including improved power utilization and reliability of
compute resources and ease of storage management. However,
this configuration also introduces the necessity for additional
hardware and software layers to manage the transfer of data
between the compute cluster and permanent storage [1], as
shown in Figure 1. These layers provide tools for parallel
application developers to effectively utilize the available HPC
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Fig. 1. I/O system configuration of the IBM Blue Gene/P supercomputer. The
compute nodes and I/O nodes are part of the same network and the storage
nodes are connected to this network by a separate Ethernet network.

resources, while not requiring them to be aware of the inner
workings of the I/O system.

Conversely, the additional layers also increase the overall
complexity of the system, thus making I/O performance anal-
ysis more difficult. Because the vast majority of parallel appli-
cations rely on the HPC I/O stack for their data management
operations, it is important that we understand the factors which
influence I/O performance. This understanding will allow us
to better detect and correct problems and to possibly enhance
system performance via the implementation of new solutions.

It is expected that I/O performance will continue to be
a significant bottleneck as the size and power of HPC sys-
tems increase [2]. Understanding the complex interactions
between the software and hardware layers of the HPC I/O
stack is a key prerequisite for I/O performance analysis and
improvement. Unfortunately, the complex, layered nature of
I/O systems makes analysis nearly impossible without the
use of specialized tools. The sheer number of nodes and the
events they generate result in data sets that are far too large
for direct analysis methods. Small tests generate hundreds of
thousands of events, with medium to large tests potentially
resulting in millions of events per second of execution and
taking up gigabytes of space when written to log files. This
growth in system and in trace data scale is the motivation
for creating novel visualization techniques, which can provide
useful information about the state and performance of the
system at a glance.

Since typical HPC I/O subsystems consist of sets of inter-
connected components, network performance characteristics
are quite relevant to the performance of the I/O system.
We therefore designed a procedure of extracting network
performance metrics from I/O trace data and a visualization
method by which we illustrate these metrics as they relate
to the activity of the I/O system. We record trace data from
three layers of the system: the application layer (MPI-IO and
POSIX I/O calls), the I/O nodes (responsible for transmitting
I/O requests to the storage cluster) and from the storage nodes
(which have direct access to the storage hardware). The result-
ing trace data is a record of all requests and communication
events that have occurred over the course of an application or
benchmark execution. We process this data to extract network
performance metrics, such as latency and throughput, and build
a complete view of the I/O system’s behavior.



To summarize, we have devised a general method for I/O
system performance analysis that would be applicable to I/O
trace data collected from any type of HPC system. We have
also performed a series of case studies of I/O benchmark ker-
nels on the IBM Blue Gene/P to demonstrate the capabilities
of our method.

II. RELATED WORK

Parallel I/O performance has long been a topic of interest
for the research community. Consequently, there are numerous
studies of I/O performance for large-scale parallel systems.
Many such studies differ from ours in that they utilize overall
performance metrics from multiple application runs at different
scales to characterize I/O system performance. Often, when
a new type of supercomputer becomes available, HPC re-
searchers perform tests to determine its exact performance and
behavior under certain loads [3], [4]. Other research studies
focus on understanding parallel I/O system performance as it
relates to a particular class of applications, such as parallel
visualization applications [5], [6], or large-scale scientific
simulations [7]. Furthermore, there are studies that are only
focused on analyzing the I/O performance of a particular par-
allel program [8]. In our work, we have endeavored to develop
a portable I/O tracing system and visualization methods that
are general enough to be useful in the analysis of any I/O trace,
while still being specifically designed for the exploration of
parallel I/O performance data.

There are two main areas of related work closely pertaining
to our project. Our work is based both on research of data col-
lection techniques from parallel systems and on visualization
techniques for parallel and network data.

A. Data Collection

HPC software instrumentation and tracing are active areas
of research with a wide breadth of research topics. In our work,
we adopt successful techniques rather than building new ones,
and we focus our efforts on gaps in existing tools.

Some mainstream tracing solutions would not be a good
fit for our purpose because they require software or hardware
configurations not available on the systems we are working
with. LANL-Trace [9], for instance, relies on general-purpose
compute-node kernels and dynamically linked libraries, which
are not available on IBM Blue Gene systems using the
lightweight CNK kernel. HPCT-I/O [10] and IOT [7] are two
examples of I/O tracing toolkits developed specifically for
leadership class architectures, respectively IBM Blue Gene and
Cray XT. However, the results published so far have all been
performed at small scale, so it is too early to say how these
toolkits will function at HPC scales. Recently, the scalability of
Scalasca was improved up to 300,000 cores [11]. TAU [12]
is a flexible program and performance analysis toolkit that
supports parallel tracing and has a field-proven scaling record,
having been used at full scale on IBM Blue Gene, Cray XT,
and others. It is a generic tool framework that can be used for
a variety of performance analysis tasks, I/O tracing included.

One successful example of generating large-scale I/O traces
is the work of the Sandia Scalable I/O team, which released the
traces of several parallel applications ran at a scale of 2744–
6400 processes on Red Storm, a Cray XT3-class machine [13].
The traces were obtained by incorporating a lightweight trac-
ing capability [14] into the SYSIO library [15], a user-level
VFS layer linked into the applications on that platform.

More recently, researchers have proposed automated tracing
and instrumentation tools for parallel I/O [16]. Such ap-
proaches combine code analysis with tracing instrumentation
to automatically extract I/O performance data from parallel
applications.

B. Data Analysis and Visualization

When confronted with relatively large amounts of parallel
event data, the use of automated analysis (machine learning) or
visualization methods becomes a necessity if we are to extract
useful information out of such data sets. This necessity has
driven the development of several analysis tools for parallel
data. For instance, KOJAK (Kit for Objective Judgement
and Knowledge-based Detection of Performance Bottlenecks)
[17]–[19] and Scalasca [20] both perform automated analysis
on parallel execution traces and detect performance issues.

Visual methods are quite effective when the analyst prefers
more direct access to the data, but they can also be coupled
with automatic pattern analysis to produce powerful results
[21]. However, many well-known visual analysis tools for
parallel trace data are focused on distilling information from
MPI traces. Jumpshot [22] and its predecessors (Nupshot
and Upshot [23], [24]) use the MPE library [25] to trace
MPI calls in parallel applications and display the collected
information in Gantt charts, using color to represent types
of MPI calls and arrows to indicate communication between
processes. Vampir [26] combines Gantt charts with aggregate
views of system activity. Jumpshot and Vampir have both been
successfully employed in the analysis of parallel I/O data as
well. The TAU (Tuning and Analysis Utilities) [12] suite is a
complete set of analysis tools for parallel performance data,
including both tracing and visualization capabilities. TAU’s
visualization tools include Gantt charts, call graph views and
communication matrices. Virtue is a unique parallel trace data
visualization tool in that it employs virtual reality techniques
to create an immersive and collaborative environment in which
developers can interact with their parallel application in real
time and can potentially adjust its behavior as it runs.

Because per-process activity representations such as Gantt
charts tend to experience scalability issues, some visualization
designs emphasize parallel event patterns and regard event to
process association as secondary [27], [28]. This allows for a
more scalable representation of large parallel traces. IOVis is a
direct precursor to this work because it targets HPC I/O traces
in particular and because it contains a matrix representation
of communication patterns within the I/O system.

As we have seen, several analysis methods for parallel
systems exist; generally, analyzing parallel trace data requires
either machine learning methods, which automatically detect



areas of interest, or visual methods. Automated analysis is
sometimes used in conjunction with visualization, resulting in
very powerful analysis tools. However, more analysis tools
are dedicated to the study of inter-process communication
(MPI traces) than to parallel I/O. There are some instances of
tools originally designed for MPI performance analysis being
adapted for the study of I/O data as well [29], [30]. But there
are still relatively few dedicated tools for I/O system analysis
and it is exactly this gap that we are trying to fill.

III. DATA COLLECTION

The typical HPC I/O software stack consists of multiple
layers of software that provide a variety of I/O capabilities
for specific application I/O patterns, system software config-
urations, and system architectures, as was shown earlier in
Figure 1.

Across the majority of HPC systems, applications store
data on high-performance parallel file systems. These file
systems include PVFS2 [31], Lustre [32], and GPFS [33]. A
file system server processes application I/O requests through
the file system client interface. The computation resource may
run file system clients on all of its nodes or on a subset of
the nodes in conjunction with I/O aggregation and forwarding
tools. Examples of I/O forwarding tools include IOFSL [34],
[35], ZOID [36], IBM’s CIOD, and Cray’s Data Virtualization
Service.

At the application level, there are several application I/O
interfaces. File system I/O interfaces, such as POSIX, provide
direct access to the file system or I/O forwarding layer.
MPI-IO provides a parallel I/O interface built on top of
the file system’s APIs; it coordinates and optimizes parallel
I/O patterns. High-level and scientific data libraries provide
mechanisms to generate self-describing and portable data sets.

The overall goal for these software layers is to provide the
best possible I/O performance for common HPC application
I/O patterns. Achieving this goal is often a difficult task for
application developers because the cost of the high-level I/O
operations in the lower layers of the I/O software stack is
unknown. Additional information and insight about how these
layers interact and what the cost of high-level operations is
in subsequent layers will help isolate bottlenecks within the
I/O software and identify areas of improvement for software
developers.

To capture the end-to-end behavior of I/O requests, we
integrated several instrumentation layers into the application,
PVFS2 file system client and server, and (optionally) I/O
forwarding. These data collection layers track the beginning
and completion of file system I/O events and collect informa-
tion about each event, such as event type and payload size.
Each data collection layer collects information for the events
initiated at that layer and adds identifiers to events to track the
operation execution through underlying software layers.

At the application layer, we instrumented MPI-IO and
POSIX calls, capturing information such as the start and end
time, file identifier, and data payload size. We instrumented
the IOFSL I/O forwarding infrastructure to capture request

caching, merging, and other transformations performed while
requests are forwarded from the compute nodes to the I/O
nodes. Note that when using IBM’s ciod forwarding, which
replays every forwarded call one-by-one, no instrumentation is
necessary, as the forwarding is completely transparent; hence,
we skip the I/O forwarding layer from the graphs shown
later in the paper. We instrumented PVFS2 client to report
the communication between the users of the file system and
the storage servers. PVFS2 daemons running on the storage
servers are instrumented to track network communication and
storage management operations.

We have deployed the tracing infrastructure on the systems
at the Argonne Leadership Computing Facility (ALCF). We
use the 40-rack Intrepid Blue Gene/P platform for generating
application traces and the 100-node Eureka Linux cluster for
generating PVFS2 server traces. Each BG/P rack contains
1024 compute nodes and 16 I/O nodes. Each compute node
has a quad-core 850 MHz IBM PowerPC 450 processor
and 2 GB of RAM. Each Eureka node has two quad-core
Intel Xeon processors, 32 GB of RAM, and 230 GB of
local scratch storage. Eureka and Intrepid share a 10 Gbps
communication network. In addition to Intrepid, for smaller
experiments we can also use Surveyor, a single-rack BG/P test
and development system with identical internal architecture.

When tracing applications in the ALCF environment, we set
up a temporary PVFS2 storage cluster on Eureka and mounted
this file system on the allocated Intrepid I/O nodes. With this
deployment, we have successfully traced applications utilizing
up to 16,384 processes on Intrepid and up to 32 PVFS2 I/O
servers on Eureka. The applications we have evaluated in this
environment include the mpi-tile-io benchmark [37], the IOR
benchmark [38], the FLASH I/O kernel [39], and the Chombo
I/O kernel.

IV. VISUALIZATION METHODOLOGY

From our previous experiments with the I/O trace data,
we discovered that visualizing the duration of communication
events did not reveal particularly useful information regarding
the state of the system. At the I/O node and storage node levels
in particular, the Send and Receive events we record tend to
have roughly the same duration, with slight variations linked to
the amount of data being transferred. This is to be expected of
a well-tuned system and is therefore not a valuable result. With
this in mind, we decided to use metrics such as latency and
transferred data size in our I/O network visualization. This has
required us to essentially “read between the lines” of our trace
data to visualize the I/O network rather than individual events.
We use the times between certain events and their associated
buffer sizes to construct our metrics, rather than relying on
event duration alone.

Our approach involves adapting a hierarchical graph visual-
ization method [40] for the analysis of large-scale parallel I/O
data. Typical high performance I/O systems have a hierarchy
of compute nodes, I/O nodes and storage nodes, which are
connected by one or multiple networks. Our tracing system
records the data transfers occurring through the I/O system
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Fig. 2. Diagram of the graph display design.

Fig. 3. I/O activity graph, depicting latency values measured on each link. This I/O trace contains
8192 compute processes, 32 I/O nodes and 8 storage nodes. The two types of network configuration
(tree network and “all-to-all” Ethernet) are clearly visible between the layers. One each edge, colored
segments indicate the latency values measured on that particular network link. In each layer of edges,
colored segments closer to the edge of the circle (towards the outside) represent high values, while
colored segments closer to the circle center indicate the lowest latency values found in the data. Color
represents the number of occurrences of a particular latency value and will be explained in more detail
in the upcoming paragraphs.

over the course of a parallel application’s execution. Thus, we
felt that this graph visualization method would be effective
for our purposes. We modified the hierarchy representation
to display the layers as concentric rings, with edges running
between them depicting communication. Thanks to our hier-
archical layout, our edge routing does not require bundling,
thus saving computation time.

First, we construct the network hierarchy by scanning
through the I/O trace and and building lists of all the compute
nodes, I/O nodes and storage nodes discovered in the data. We
then lay out the nodes in three concentric rings, one for each
layer. The ordering of the rings is as follows: the outer ring
contains the compute nodes, sorted by MPI rank. The middle
ring consists of all the client nodes, sorted by the ordering
in which the compute nodes communicate with them, and
the innermost circle houses the server nodes, simply ordered
by their node ID. We have chosen to lay out the nodes in
this way because in our traces, there are always significantly
more compute nodes than I/O nodes and more I/O nodes than

storage nodes. Thus, we allocate more space to represent nodes
in the denser layers. An overview of the design can be seen
in Figure 2.

To construct the edges, we require the user to select a period
of time from a timeline histogram. This period may be the
entire duration of recorded execution or simply a fraction of
time in the trace data. We then query the data for all the I/O
events which occurred during the selected period of time. If the
resulting events indicate that communication occurred between
two nodes, then there is an edge between these nodes. For
example, if we find a ClientSend event at the I/O node level,
we look for a corresponding ServerReceive event at the storage
node level to establish if there is communication between the
I/O node and the storage node. Figure 3 shows an observed
I/O communication graph.

A. Nodes and Edge Routing

We simplify our edge routing procedure by initially ordering
the node representations at each layer in an advantageous



manner. The nodes from each layer are represented by ring
segments or by circle sectors in the case of the I/O servers. On
the ring corresponding to the application layer, processes are
sorted ascendantly according to their MPI rank. We attempt to
place client nodes on their ring according to which processes
they receive requests from. In our case, the compute nodes
and the I/O nodes are connected by the Blue Gene/P tree
network, so any compute node may only send requests to one
I/O node, while I/O nodes may receive requests from a number
of compute nodes. Thus, our ordering of process IDs and I/O
nodes in the hierarchy serves to minimize the number of edge
crossings at this level. Edge crossings are, however, unavoid-
able when visualizing larger data sets containing thousands
of compute nodes, such as the one depicted in Figure 3. The
innermost circle represents the storage nodes, arranged in the
order in which the nodes were detected in the data. Since the
network between the I/O and the storage nodes has all-to-all
connections, there is no particular ordering that we can apply
on the storage nodes’ layer.

Once the edge lists are generated, we render the graph,
using linear interpolation of angles around the circle to give
edges their curvature and to route them such that they do
not cross the intermediate circles belonging to other layers
unless they have reached their target node. For an edge with
a start point (startR, startθ ) and an end point (endR, endθ ) in
polar coordinates, intermediate point positions are calculated
as follows:

interθ = startθ +(endθ − startθ)× interStep
interR = startR+(endR− startR)× interStep

where interStep is an intermediate step in the interpolation
defined as an integer between 0 and the total number of
interpolation steps. We define the number of interpolation steps
such that the edges appear as curves and no interpolation
artifacts are visible. We also route edges on the shortest path
around the circle by disallowing the difference between the
end and start angles to exceed π or to be smaller than −π .
We adjust the angles as follows:

endθ =

{
endθ −2π, if (endθ − startθ)≥ π

endθ +2π, if (endθ − startθ)< π

B. Performance Metrics and the Color Map

In addition to revealing the presence of communication
between nodes, each edge is itself a 1-D heatmap of values
characterizing this communication. In this section, we describe
the procedure by which we compute the values for each edge
and how we represent these values using edge coloring.

Latency is the amount of time it takes from the start of a
request or send event until its processing starts or until the
corresponding receive event ends. Depending on the layers at
which events originate, latency is computed as follows:

• Between compute nodes and I/O (client) nodes: the
difference between the start time of the first client event
and the start time of the MPI-IO request; the “first client
event” is the first I/O node event in chronological order

which corresponds to the application I/O request. This is
the I/O node’s response to the compute node’s request.

• Between I/O nodes and storage nodes: the difference
between the end time of the ServerReceive event and the
start time of the corresponding ClientSend event

• Time to write data to permanent storage: the difference
between the end time of a server Write event and the
start time of the same event. This metric is not currently
present in our visualization, but adding it would be a very
straightforward extension.

We compute latency values for each edge over the selected
period of time. As previously mentioned, we need to match
events across layers to achieve this. We do this by tracking the
rank of the MPI process which initiated the I/O request and the
ID of the request, which is unique per request per MPI rank.
The coloring of the edges, shown in Figure 4, corresponds to a
heat map of latency values. Latency is depicted by the position
of the coloring on the edge. On each edge, the outermost point
represents the highest latency value found in the data set, while
the innermost point corresponds to the globally lowest latency
values. We have chosen this ordering because it supports the
perceptual association of larger values with the extra space
available at the outer rim of a circle.

One problem that we discovered early on is the presence
of negative latency values. These values occur due to slight
clock desynchronization among the physical nodes running
the application and I/O subsystem software. When tracing
execution across numerous processors and over networks, it
is impossible to keep the nodes’ clocks fully synchronized
without introducing frequent Barrier-type operations to resyn-
chronize them. Introducing Barriers is undesirable because it
would perturb the observed environment and negatively impact
the performance of the applications we are analyzing. Instead,
we adjusted for clock skew where we had MPI file operations
in the traces that are known to be blocking operations, such as
File Open. This operation acts as a Barrier, so it should release
at approximately the same time on all the compute nodes.
When we found discrepancies between the end times of File
Open operations, we adjusted the timings of all application-
level I/O events such that these discrepancies were eliminated.
This greatly reduced the frequency of negative latency values
between the compute processes and I/O nodes. However, we
do not currently have a reliable method of adjusting this
desynchronization across layers without introducing signifi-
cant error in the data. We treat the negative values as simply
the minimum observed latency and are thus still able to
infer interesting and useful information regarding the relative
latency among nodes and between different layers of the I/O
system.

Because latency is heavily influenced by the amount of
data being transferred through a particular link, we have also
included the capability of visualizing communication sizes
in our tool. Unfortunately, not all of our data sets contain
buffer size information at the compute process level. When
this information is present, it may be very helpful in explaining
why certain processes experience higher or lower latency



levels than others, or it may indicate a performance problem
when data sizes are disproportionately small in relation to the
observed latency. In the graph visualization, buffer sizes are
represented in the same manner as latency values are. Coloring
at the outer edges of the circle represents the largest buffer
sizes, while the center of the circle (edge destination point)
corresponds to the minimum buffer size.

The color segments on the edges illustrate the number of
times a certain latency value was encountered in the selected
time period. We use two separate color maps for the two
levels of edges, because using a single color map would
result in different values mapping to the same color across the
layers, which would be confusing. Grey means that no values
were detected in the range. At the application–I/O node level,
blue represents a low incidence of values, green represents
the mid-range and yellow segments denote the latency values
which were encountered the most. At the I/O node–storage
node network level, the color progression is violet → red
→ orange. Color interpolation is performed on a logarithmic
scale. We designed both these color gradients such that they
have increasing luminance from top (for low values) to bottom
(high values). Our intention was to avoid the confusion caused
by color maps with random luminance variability [41].

Fig. 4. Illustrating the color mapping: A section of the network activity graph
between the compute nodes and I/O nodes from a FLASH trace on HDF5
with 2048 compute processes. The abundance of green and yellow coloration
indicates that most links contain approximately the same number of latency
value occurrences. The colored bands are distributed in a circular fashion,
meaning that most communication across the layers occurred with around the
same latency. The longer blue lines correspond to a small subset of compute
nodes which experienced a wide range of latency values.

V. RESULTS

To evaluate our method, we have collected a number of
benchmark traces on the IBM Blue Gene/P systems Intrepid
and Surveyor, which are housed at the Argonne National
Laboratory, and visualized the latency recorded in the I/O
network. In this section, we present the results of our case
studies.

First, Figure 5 shows an overview of the latency patterns
we most commonly saw in our study.

A. Chombo

The Chombo I/O benchmark is derived from Chombo, a
parallel toolkit for adaptive solutions of partial differential
equations [42]. Chombo is an interesting application because
its I/O patterns are difficult for parallel file systems or I/O

(a) Circular alignment of colored segments indicates that
latency values are approximately constant, indicating a well-
tuned and balanced I/O.

(b) A striped pattern occurs when the data is striped across
various data storage servers, resulting in bands of nearby ranks
accessing different I/O nodes. Depending on the network con-
figuration, this kind of access pattern might not be beneficial.

(c) A noisy pattern results from a high variance in latency, as
colored segments do not follow any particular alignment. This
pattern is characteristic of initialization stages, but could indicate
performance problems or imbalance if seen for an extended
period of time during application execution.

(d) An outlier behavior occurs when a small number of com-
pute nodes have higher latency than the rest, which is shown
as a small number of colored segments at the very edge of the
circle. This pattern could indicate severe imbalance, hardware
failure, or special-purpose compute nodes that write much larger
volumes of data.

Fig. 5. Common patterns in our latency visualization.

middleware to optimize. We performed our tests on Surveyor,
with 512 compute processes, 2 I/O nodes and 2 storage
nodes, using both the in.r222 and in.r444 example input files
provided with the benchmark. The difference between these
two input cases is that in.r444 writes a larger output file,
approximately 18 GBytes in size.

In the r222 example, shown in Figure 6, latency values
between the application and I/O node layers have a relatively
wide distribution (shown as widely scattered blue regions), but
a large number of values are concentrated in circular patterns.
The different levels of these patterns actually correspond to



Fig. 6. Chombo r222 I/O latency over the entire execution. There is a
wide latency distribution and an alternating pattern of high latency among
some of the compute processes. These patterns correspond to the data write
patterns observed in Figure 10.

Fig. 7. Chombo r444 I/O latency over the entire execution. There is a more
even distribution of relative latency values among the compute processes.
The data write patterns for this example, shown in Figure 11, also indicate
more consistency in this execution instance than the r222 case.

Fig. 8. Chombo r222 I/O latency—first half of the execution; all processes
appear to experience approximately the same latency with respect to I/O
node access. The striping latency pattern may be due to request queuing
effects at the I/O node level.

Fig. 9. Chombo r222 I/O latency—second half of the execution, showing
a wider distribution of latency values and a number of outlying processes.
These processes are responsible for writing the larger data buffers, which
explains their higher latency values.



Fig. 10. Chombo r222 write buffer sizes throughout execution, showing a
wide distribution of large and small data write requests. Colored segments
indicate high to low buffer sizes, from the outside toward the inside of the
circle and the scale is identical to the one in Figure 11. At the I/O node–
storage node communication level, we notice that the buffers are divided
up for storage, filling the entire range of sizes.

Fig. 11. Chombo r444 write buffer sizes throughout execution. This
instance of the application mostly writes the same buffer sizes as the r222
case. Surprisingly, there is an instance of a very large buffer written by
process 0 (highlighted by the red circle). If this buffer could be broken up
into smaller pieces, it would likely improve the overall performance of the
application.

different time periods in the execution. Between the I/O nodes
and storage nodes we notice mostly mid-range latency values,
but also with a wide distribution, as indicated by the relatively
long length of the colored segments. The benchmark writes
data using several buffer sizes, which correlates with the
distribution of latency values.

By reducing the range of the temporal selection, we can see
a change in access patterns between early (Figure 8) and late
(Figure 9) in the application. The second half of the execution
exhibits a wider distribution of values and the highest latency
values recorded in this data set. The maximum latency, denoted
by the blue coloring at the outermost edge of the circle, was
observed at the end. This is possibly a result of the cleanup
operations at the end of execution. There is also an alternating
pattern of higher and lower latency values across the compute
nodes, which indicates that some network links may have been
saturated with requests and thus resulted in longer wait times
for requests to be processed.

In the r444 case displayed in Figures 7 and 11, we notice
that the majority of operations had similar latency values, as
there is a thick circular band of yellow/green coloring in the
visualization. This coloration indicates that there were more
overlapping latency values observed in this trace. These values
are also more centered around mid to lower range, potentially
indicating better load balance or matching of resources to the
task in this case. Processes 0–255 appear to have experienced
overall higher latency, which may be due to the very large data
request issues by process 0, which is highlighted in Figure 11.

By comparing these two separate executions of the same
application, we notice that one of them appears to utilize
I/O system resources more effectively. The r222 case, despite
being shorter in duration, had a much wider distribution of
latency values.

In Figure 10, we can see that there are some consistent
buffer sizes being written, indicated by the concentric rings,
but many of the larger data sizes appear to be randomly
distributed among the compute processes. The r444 case has
a much more concentrated pattern, both of latency values and
of buffer sizes, indicating that it was better suited to utilize
2 I/O and 2 storage nodes. The single very large request
issued by process 0 in this case is a performance bottleneck.
As we see in Figure 7, it causes all the compute processes
accessing the same I/O node as process 0 to experience higher
request processing latency. If this data buffer could somehow
be divided into smaller write requests, we would likely see a
performance improvement.

B. FLASH-IO

FLASH-IO is the I/O kernel of FLASH, a multiphysics mul-
tiscale simulation code for general astrophysical hydrodynam-
ics problems [39]. This kernel measures the I/O performance
of the FLASH code by creating the primary data structures
used in the simulation and then writing out example plot files.
FLASH-IO writes data in three separate files: a checkpoint file,
a plot file with centered data and a plot file with corner data.
Our main FLASH-IO example is a trace collected on 2048



Fig. 12. FLASH-IO plot file write patterns (phases 2 and 3). The different
buffer sizes are clearly visible. There is a set of large buffers being written
by the application, as evidenced by the blue-green band at the periphery
of the circle, two sets of mid-sized buffers, and a larger number of very
small I/O operations. On the edges connecting the I/O nodes to the storage
nodes, we can observe how these buffers are divided up for efficient
storage. This also serves to balance the load for the I/O and storage nodes.

Fig. 13. FLASH-IO latency patterns during the writing of both plot files.
At least five distinct rings are formed by the different latency values, more
than the number of different buffer sizes written. This may be due to
request queuing at the I/O node level. The outermost ring (highest latency)
corresponds to the largest data buffers written. At the I/O node – storage
node communication level, operation latency tends to be relatively low,
as a result of breaking up large requests into smaller buffers for storage.
However, one of the links displays a few instances of high latency, possibly
indicating minor load imbalance.

compute processes, using 8 I/O nodes and 2 storage nodes to
handle I/O requests (Figure 14). The data model used in this
test is HDF5 with individual I/O requests (no collectives).

In the first phase, the benchmark is initialized and writes a
checkpoint file. This accounts for one set of large-buffer write
operations high to mid-range latency. The I/O system breaks
up these large buffers for writing to permanent storage; the
load on the I/O nodes and on the storage nodes appears to be
balanced.

In the second and third phases of FLASH-IO (Figures 12
and 13), the two plot files are created. The first plot file appears
to be sent to the storage nodes using larger buffer sizes than
the second one. The maximum size buffers are still present, but
in smaller numbers, possibly indicating further checkpointing
that the application is performing to preserve partial results in
case of a system failure. Although only four distinct buffer
sizes are written at this stage, we can distinguish at least
five circular latency bands in Figure 13. Additional latency
may be caused by queuing of requests at the I/O node level.
Each I/O node receives nearly simultaneous requests from 256
compute processes; if it is unable to process all these requests
at once, it must leave some of the processes waiting for a brief
period of time. Since all the latency rings appear to be even
and encompass all the compute processes, we can conclude
that the system is appropriately load-balanced and that all the
processes have equal priority for the I/O nodes to process their

Fig. 14. Latency patterns in FLASH-IO for the entire execution. While values
appear to be widely distributed between the compute nodes and I/O nodes,
the green band around the edge of the circle indicates that there is a high
incidence of maximum-latency events. As we will see shortly, this is because
the benchmark writes numerous large buffers throughout its run.



data write requests. Another interesting observation is that the
I/O nodes break up larger write requests, making them more
efficient for the storage nodes to process and write. This is
apparent in the wide distribution of message sizes between
the I/O nodes and storage nodes, as well as by generally low
latency values at this level.

VI. CONCLUSIONS AND DISCUSSION

Efficient file I/O is critical to the performance of large-scale
scientific applications, and is expected to remain so given
the continuously decreasing bytes/flops ratio. The scale of
the contemporary HPC systems, coupled with their complex,
multilayer hardware and software architecture, means that the
performance measurement and analysis of HPC I/O systems is
bound to be a formidable task. Even at relatively modest scale
of a few thousand processes, jobs can generate millions of I/O
events that take gigabytes of log space, with the resulting trace
files beyond the human capability to sift through manually.

This work presented a novel radial visualization technique
that lends itself well to the analysis of complex, multi-layer
event traces. The technique was applied to the I/O traces of
multiple application I/O kernels obtained on a Blue Gene/P
system at a scale of several thousand processes, collected
from three instrumented I/O layers: application processes,
I/O nodes, and storage nodes. Radial graphs visualize the
connections between these layers in a compact, easily compre-
hensible, not to mention attractive, fashion. The connections
can be colored to show additional information about the I/O
events, such as the latency or data payload size, providing an
overview of both the raw values and their frequencies.

This approach can be used to analyze and compare ex-
isting I/O paradigms, revealing potential inefficiencies and
bottlenecks. Our experiments with traces from production
systems have revealed many interesting patterns; in addition to
confirming an overall good tuning of the systems tested, we
have also identified several cases that could result in ineffi-
ciencies and thus warrant further analysis. Techniques such as
those presented here can reveal problems in applications and
limitations in I/O systems that are not otherwise immediately
apparent. We believe that our technique can be beneficial
for the creators of applications and system software, as well
as for the HPC system administrators, in the performance
analysis, verification, and tuning of large-scale applications,
I/O middleware, and HPC I/O systems—both existing and
future.

VII. FUTURE WORK

To be a truly useful day-to-day tool for practitioners, our
technique would need to be part of a more comprehensive tool
set comprising multiple visualization techniques, advanced
filtering and analysis, interactive drill-down techniques for in-
depth studies, etc. While that goes beyond what a research
project can deliver, we do intend to continue improving it.

Our method has proven to be effective at current scales,
however, it is not without its limitations. At the anticipated
Exascale counts of up to a million compute nodes and a

billion compute threads, it will be necessary to perform pattern
analysis and encode multiple nodes’ communication into one
edge.

The technique could be made more comprehensive by
extending it to visualize additional layers, such as a high-
level I/O library, I/O forwarding layer, or storage hardware.
In the near future, we are looking to implement additional
metrics, such as bandwidth per link or data throughput, into
our visualization.

While our case studies were performed on IBM Blue Gene/P
systems, our method is not limited to them, and it would be
interesting to apply it to other HPC architectures and analyze
their I/O patterns.
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F. Wolf, “Large-scale performance analysis of Sweep3D with the
Scalasca toolset,” Parallel Processing Letters, vol. 20, no. 4, pp. 397–
414, 2010.

[12] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp. 287–311, 2006.

[13] Sandia National Laboratories’ Red Storm I/O traces, http://www.cs.
sandia.gov/Scalable IO/SNL Trace Data/index.html.

[14] N. Nakka, A. Choudhary, R. Klundt, M. Weston, and L. Ward, “Detailed
analysis of I/O traces of large scale applications,” in HiPC, International
Conference on High Performance Computing, Dec. 2009.

[15] The SYSIO library, http://sourceforge.net/projects/libsysio.
[16] S. J. Kim, Y. Zhang, S. W. Son, R. Prabhakar, M. Kandemir, C. Patrick,

W.-k. Liao, and A. Choudhary, “Automated tracing of I/O stack,” in
Proceedings of the 17th European MPI users’ group meeting conference
on Recent advances in the message passing interface (EuroMPI ’10).
Stuttgart, Germany: Springer-Verlag, 2010, pp. 72–81.

[17] B. Mohr and F. Wolf, “KOJAK—A tool set for automatic performance
analysis of parallel programs,” in Euro-Par 2003 Parallel Processing,
ser. Lecture Notes in Computer Science, H. Kosch, L. Boszormenyi, and
H. Hellwagner, Eds. Springer Berlin / Heidelberg, 2003, vol. 2790, pp.
1301–1304.

[18] F. Wolf and B. Mohr, “Automatic performance analysis of MPI applica-
tions based on event traces,” in Proceedings from the 6th International
Euro-Par Conference on Parallel Processing (Euro-Par ’00). London,
UK: Springer-Verlag, 2000, pp. 123–132.

[19] ——, “Automatic performance analysis of hybrid MPI/OpenMP appli-
cations,” in Parallel, Distributed and Network-Based Processing, 2003.
Proceedings. Eleventh Euromicro Conference on, Feb. 2003, pp. 13–22.

[20] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr, “Scalable parallel
trace-based performance analysis,” in In Proc. 13th European PVM/MPI
Conference. Springer, 2006, pp. 303–312.
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